
Learning HTML and CSS

DebugAcademy.com
@DebugAcademy

✓ Training material prepared by Debug Academy.

○ We train companies and individuals looking to change careers

■ Experience training companies such as Northrop Grumman

■ Also provided career changing education for countless

individuals

○ Get in touch to learn more!

Follow us! @DebugAcademy & DebugAcademy.com
Twitter: @ashabed E-mail: ashraf.abed@debugacademy.com

https://debugacademy.com https://drupal.tv

Enjoy today’s training!

Ashraf Abed
Technical Architect

Acquia Inc. (2014 -2017)
Senior Software Engineer

Carr Systems (2012 – 2014)
Cyber Software Engineer

Northrop Grumman (2011)
Web Developer

Depthskins Design Studio (2009)
Freelance Web Developer

Self-employed (2003 – 2009)
B.S. Electrical Engineering (UMD)

ashraf.abed@debugacademy.com

Founder of Debug Academy
Debugacademy.com

Certified Drupal 8 Grand Master
Certified Drupal 7 Grand Master
Certified Front-end Dev
Certified Back-end Dev
Certified Developer

Co-instructor: Lisa McCray
Drupal Developer

Bixal

Principal & Senior Software Engineer -
SRA, Inc. (now General Dynamics)

Research & Teaching Assistant in
Computer-Supported Cooperative Work

Systems Analyst
Procter & Gamble

lisa.mccray@debugacademy.com

MS, Industrial Engineering/Human Factors
University of Illinois at Urbana-Champaign

BS, Electrical Engineering
Ohio State University

Co-instructor: Jack Garratt
Web Developer

- Debug Academy (2018)
History Teacher

- The Potomac School (2017)
Instructor, Adjunct

- The George Washington University (2015)
Graduate Teaching Assistant

- The George Washington University
(2009-2015)

jack.garratt@debugacademy.com

-Developer on drupal.tv and
arcsyria.org
-History, PhD 2016 (Germany and
Africa)
-Lived in Berlin, Germany
(2013-2014)

Career-changing Drupal 8 PT Course

3 month part-time Drupal 8 Web Developer course

○ Next course begins January 27, 2019

○ Applications close as soon as class is full.

○ We build, launch, & contribute Drupal projects in class!

This presentation comes from our

...Onto the good stuff

Whom is this class for?

▪ Those with limited or no background in web development

▪ Those who need a refresher session on the basics

▪ Those who want a hands-on approach to building website with live guidance

What tools will we need?

▪ A Code Editor -- Sublime Text
○ However, if you have one that you particularly enjoy, feel free to use the one that you are most

comfortable with.

▪ An Internet Browser -- Google Chrome
○ Internet browsers can behave differently from each other when reading HTML and CSS. We

recommend Google Chrome or Mozilla Firefox. Regardless, ensure that your internet browser is
up-to-date

▪ A File Folder Downloaded from Github -- On the Desktop for Availability
○ This folder will hold all your files that we will write over today. Cherish it, refer back to it, and it will

act as a reminder of where you started.

https://www.sublimetext.com/3
https://www.google.com/chrome/

The page we’ll begin building

The project files
Download our project:

https://github.com/debugacademy/debugacademy-htmlcss

Press:

○ Clone or Download

Then:

○ Download as Zip

And unzip the file on your Desktop

https://github.com/debugacademy/debugacademy-htmlcss

What does it mean to ‘code’ something?
▪ Programming languages are just like natural languages, except:

○ They possess (relatively) very limited vocabularies

○ They are explicit

○ They ‘state’ - they never ‘imply’

▪ Programmers are translators

▪ To ‘code’ or ‘program’ is to translate

○ From a human-friendly language, such as English

○ To a “programming language”

We do what Google Translate does?
▪ Well, not really. Computers, as fascinating and powerful as they are, are

“dumb”.
○ People can infer & read between the lines

■ This makes Google Translate ‘good enough’ for humans
○ Computers read only the lines

■ Nothing’s implied, there’s no body language, there’s no tone
▪ And programming languages have a very limited vocabulary.

Programmers comprehensively translate tasks using a limited vocabulary in a
language that is unnatural to humans.

And that’s why programming takes getting used to.

Languages have limited vocabularies and capabilities.
Pick what language to use based on what goal you are attempting to accomplish.
You will often use more than one language to accomplish a single goal.
Let’s look at a few programming languages:
✓ HTML

○ Vocabulary:
■ Elements on a page
■ Containers for things on a page

○ Understood by: Web Browsers
○ Understands: N/A

✓ CSS
○ Vocabulary: Styling, positioning
○ Understood by: Web Browsers
○ Understands: Web Browser Users (Very limited)

Different programming languages

 <input type=”checkbox”>

 Input { color: red; }

✓ JavaScript
○ Vocabulary:

■ Data: Read, Store, Create, compare, modify, return.
■ Talk to user’s web browser.
■ Does not wait for previous line to finish before starting next line.
■ Group code in various ways.
■ Many built in functions.

○ Understood by: Web Browsers
○ Understands: Web Browser Interactions

Don’t like what you see? You can even make your own programming language!

More programming languages (JS)

document.getElementById("myBtn")
.addEventListener("click", function(){ alert("Hello World!"); });

Practice: “IRL” programming language
● Vocabulary:

○ LoadPerson(Person’s Name)

○ RotateJoint (Which Joint?, How many degrees?, How fast?)

○ SayWord(Which word?)

○ Locator(Person or Place)

○ “my_value = ” (this allows you to store values)

● Understood by: any human (it uses mind-control)

● Understands / Listens for:

○ Twitter (@DebugAcademy) Follows

○ Newsletter (DebugAcademy.com) Subscriptions

“IRL” Task: Make a user Sit Down

 Code:
 person = LoadPerson(Twitter Follower)
 person.RotateJoint(‘left knee’, 90, slow)
 person.RotateJoint(‘right knee’, 90, slow)
 person.RotateJoint(‘hip’, -90, slow)
 Progress, but that didn’t quite work

 Refactor:
 person = LoadPerson(Twitter Follower)
 person.RotateJoint(‘left knee’, 90, slow)
 .RotateJoint(‘right knee’, 90, slow)
 .RotateJoint(‘hip’, -90, slow)
 It works on my machine!

“IRL” Task: Everyone in the room, stand up
How could we accomplish this within the confines of the language?

The language doesn’t know who “everyone” is. It does not speak to the group.

It only “understands”:

- @DebugAcademy twitter follows

- DebugAcademy.com newsletter follows

But nothing is implied in programming.

So, how do we do this within the confines of the language?

Let’s look back at the language “IRL”...
● Vocabulary:

○ LoadPerson(Person’s Name)

○ RotateJoint (Which Joint?, How many degrees?, How fast?)

○ SayWord(Which word?)

○ Locator(Person or Place)

○ “my_value = ” (this allows you to store values)

● Understood by: any human (it uses mind-control)

● Understands:

○ Twitter (@DebugAcademy) Follows

○ Newsletter (DebugAcademy.com) Subscriptions

(Manual step) Make the teacher follow DebugAcademy on twitter
Then we can write:

Within the confines of the language:

 person = LoadPerson(Twitter Follower Presenter)
 person.SayWord(‘Follow’)
 person.SayWord(‘@DebugAcademy’)
 person.SayWord(‘On’)
 person.SayWord(‘Twitter’)

 attendee = LoadPerson(Next Twitter Follower)
 attendee.RotateJoint(‘left knee’, -90, slow)
 .RotateJoint(‘right knee’, -90, slow)
 .RotateJoint(‘hip’, 90, slow)

Now the class can follow @DebugAcademy on twitter, setting up the next code:

Meaning this code has to be run again.. And again.

But we have multiple people in the class...

 attendee = LoadPerson(Next Twitter Follower)
 attendee.RotateJoint(‘left knee’, -90, slow)
 .RotateJoint(‘right knee’, -90, slow)
 .RotateJoint(‘hip’, 90, slow)

 attendee = LoadPerson(Next Twitter Follower)
 attendee.RotateJoint(‘left knee’, -90, slow)
 .RotateJoint(‘right knee’, -90, slow)
 .RotateJoint(‘hip’, 90, slow)

 attendee = LoadPerson(Next Twitter Follower)
 attendee.RotateJoint(‘left knee’, -90, slow)
 .RotateJoint(‘right knee’, -90, slow)
 .RotateJoint(‘hip’, 90, slow)

Slow and steady wins the race, right?

What if the task were more complex?
Task: Make the latest follower go to Chipotle.
person = LoadPerson(Twitter Follower)
chipotle_location=Locator(Nearest Chipotle)
person_location = Locator(person)
distance = chipotle_location - person_location
if distance > 0
 then:
 person.RotateJoint(‘left knee’, 45, medium)
 .RotateJoint(‘left ankle’, 25, medium)
 .RotateJoint(‘right knee’, -45, medium)
 .RotateJoint(‘right ankle’, -25, medium)

 person.RotateJoint(‘left knee’, -45, medium)
 .RotateJoint(‘left ankle’, -25, medium)
 ...

 We’re not finished , and this is getting complicated.

As is the case with any language, you can write, or you can write well. Here are
some rules for writing code “well”:

“KISS”
● Keep it simple, stupid.

“DRY”
● Don’t repeat yourself.
● Writing the same code repeatedly? Create a function for that code.

Single Responsibility
● Ensure every function does only one thing, and does it well.

Separation of Concerns
● Write code so that it is separated into distinct components that function

independently whenever possible.

Writing ‘better’ code

As is the case with any language, you can write, or you can write well. Here are
some rules for writing code “well”:

“YAGNI”
● You aren’t gonna need it
● Don’t assume functions you aren’t using today will be useful in the future. Don’t

write code until you need it.

Make it work, then make it good
● AKA “Avoid premature optimization”.
● Make it work, test it, then improve what needs to be improved.

Easy to understand Naming
● Choose self-explanatory names for your functions and variables.

Writing ‘better’ code

What is HTML?

● Instructions for a web browser telling it what it needs to display

● The structure and content of most websites is output in HTML

● Nearly all web pages are displayed using HTML

● HTML is a relatively simple programming language

● HTML is not meant for styling

HTML is a Markup Language

Content is “marked

up” with additional

information that tells

a browser what to

do with it.

Content:

A Tale of Two Cities Book the First -- Recalled
to Life I. The Period It was the best of times,
it was the worst of times...

Marked-Up Content:

This is the main content heading-> A Tale of Two Cities
This is a section heading-> Book the First -- Recalled to
Life
This is the start of a chapter-> I. The Period
This is the main body of the text-> It was the best of times, it
was the worst of times...

Browser’s Output:

A Tale of Two Cities

Book the First -- Recalled to Life

I. The Period

It was the best of times, it was the worst of times...

● The structure and content of most websites is output in HTML

● HTML is a relatively simple programming language

● Nearly all web pages are displayed using HTML

● HTML is not meant for styling

What is HTML?

<tagname>content</tagname>

<p>This is an HTML paragraph.</p>

HTML5 Elements
Have a start tag, an end tag, and the content in-between:

‘HTML element’ is everything from the start tag to
the end tag:

● Attributes provide additional information about an element

● Attributes are always specified in the start tag

● Attributes usually come in name/value pairs like: name=“value"

●This is a link

●

HTML5 Attributes
HTML elements can have attributes

HTML for a web page contains

both the marked-up content as

well as some extra information

for the browser that never shows

up on the screen.

What Do You Need for a Web Page?
Minimal HTML5 Web Page:

<!doctype html>
<title>My Web Page Title</title>

More Typical HTML5 Web Page:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>title</title>
 </head>
 <body>
 <!-- page content -->
 </body>
</html>

<head>

● Contains data which is not directly
displayed on the page

● Includes information about the page’s
contents

● Placed once: between the <html> tag
and the <body> tag

<title>

● Defines the title of the browser
window

● Placed once: within the <head> tags

Building a page with HTML
<html>
 <head>

 </head>

</html>

<html>
 <head>
 <title>Page Title</title>
 </head>

</html>

Page Title

Set our page’s <title>
● Open continuousgood/homepage.html in your browser

○ You should see a blank page

● Open SublimeText

○ In SublimeText, Open/edit:

■ continuousgood/homepage.html

● In-between the opening & closing <head> tags, set the page’s title:

○ <title>Continuous Good</title>

● Save the file

● Refresh the webpage in your browser to see the changes

<body>

● Defines the document's body

● Visible content is placed within the
body tag

● Contains all content of an HTML
document

○ Text, links, images, tables, lists,
etc.

● Placed once: After </head>

Building a page with HTML
<html>
 <head>
 <title>Page Title</title>
 </head>

</html>

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 Content...

 </body>
</html>

Page Title

Content...

<h1>, <h2>, <h3>, ...

● h1 is the primary heading on a page, h2
is the second most prominent heading,
then h3, and so on..

● Used by styling and search engines to
determine the most prominent text on
the page.

● <h1>Site name</h1>

● <h2>Section heading</h2>

● <h3>Sub-section heading.</h3>

● <h2>Other section heading</h2>

● Do not use for highlighting text, or
making it bold

Building a page with HTML
<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 Content...

 </body>
</html>

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <h1>Primary (h1)</h1>
 <h2>Secondary (h2)</h2> Content...
 <h2>Another Secondary (h2)</h2>More...
 </body>
</html>

Page Title

Content...Primary (h1)
Secondary (h2)
Content…

Another Secondary (h2)
More...

Set our page’s headings
● Open SublimeText

○ In SublimeText, Open/edit:

■ continuousgood/homepage.html

● Where it says: “<!-- The header section -->”

○ Add a line: <h1>Continuous Good</h1>

● Where it says: “<!-- The "Welcome To Continuous Good" section -->”

○ Add a line: <h2>Welcome to Continuous Good</h2>

● Save the file

● Refresh the webpage in your browser to see the changes

<section>

● A section in the page

● Used to group content (i.e. content
relates to a single theme)

<div>

● Generic container element

● Used to group block-elements

● Often used for structuring page
layouts

● Elements are then arranged and
formatted with CSS

Building a page with HTML
<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 Content..

 </body>
</html>

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <div id=“sidebar”>Sidebar</div>
 <section id=“projects”><h2>Our Projects</h2>
 Blog posts about our projects</section>
 </body>
</html>

Page Title

Content...Sidebar Our Projects
Blog posts about our projects(Generic

section
division
using ‘div’)

(Specific type of content grouped
using ‘section’)

● Used for targeting and grouping
inline-elements in a document.

● Provides no visual change by itself.

● Provides a way to style or act on a part
of text.

<p>

● Specifies the start and end points for a
paragraph

Building a page with HTML
<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 Words in a sentence...
 More words...

 </body>
</html>

<html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <p>Words in a sentence…</p>
 <p>More words…</p>

 </body>
</html>

Page Title

Words in a sentence…
More words in a sentence...
Words in a sentence…

More words in a sentence...

Set and <p> tags
● Open SublimeText

○ In SublimeText, Open/edit:

■ continuousgood/homepage.html

● Where it says: “<h2>Welcome to Continuous Good</h2>”

○ Add a span around the words “Welcome to”

■ “<h2>Welcome to Continuous Good</h2>”

● Directly below that <h2>, use paragraph tags to begin a paragraph:

○ <p>My long, heartfelt welcoming message will be written here.</p>

● Creates a new unordered list

● ‘Ordered’ or ‘Numbered’ list

● List item

Building a page with HTML
..<body>

First item
Second item

First ol item
Second ol item

 </body>

..<body>

 First ul item
 Second ul item

 First ol item
 Second ol item

 </body>

Page Title

Content...● First ul item
● Second ul item

1. First ol item
2. Second ol item

Create the main menu
● In SublimeText, Open/edit:

■ continuousgood/homepage.html

● Directly below your </h1> tag, create a list of menu links:

○

 Give Forward

 Explore

 Charities

 About Us

● Save then view your webpage in your browser

Building a page with HTML

• head
• title
• body
• h1, h2, h3, h4…
• section
• div
• table, tr, td, thead, tbody
• span, p
• ul, ol, li

<html>
 <head><title>Page title</title></head>
 <body>
 Text
 </body>
</html>

TextTextText

<html>
 <head><title>Page title</title></head>
 <body>
 <div id=“wrapper”>Text</div>
 </body>
</html>

<html>
 <head><title>Page title</title></head>
 <body>
 <div id=“wrapper”>
 <div id=“header”>Header</div>
 <div id=“content”>Content</div>
 <div id=“footer”>Footer</div>
 </div>
 </body>
</html>

Header
Content

Footer

<html>
 <head><title>Page title</title></head>
 <body>
 <div id=“wrapper”>
 <div id=“header”>Header</div>
 <div id=“nav”>

 Home About Contact

 </div>
 <div id=“content”>Content</div>
 <div id=“footer”>Footer</div>
 </div>
 </body>
</html>

Content
Home About Contact

Header

Footer

Instead of <div id=“header”>, <div id=“footer”>, etc, you should use the HTML5
alternatives:

HTML5 Semantic Elements

Use semantic HTML for our menu
● In SublimeText, Open/edit:

■ continuousgood/homepage.html

● Wrap your opening and closing tags in <nav> tags:

○ <nav>

 Give Forward (…) About Us

</nav>

● Save then view your webpage in your browser

Same content, different browsers

And we’re done with the HTML!

...What’s missing?

CSS

DebugAcademy.com

● CSS stands for ‘Cascading Style Sheet’

● Applies color, alignment, spacing, and sizing to web pages

● Analogy:

● HTML: structure and furniture for a house

● CSS: paint, finishing, and alignment

What is CSS?

● Selectors: What is being styled

● Properties: What style should be applied

● ‘Style’ includes:

● Color

● Spacing

● Position

● Size

● Background

CSS Syntax

What CSS looks like

[Selectors] {
 [style properties]
}

HTML element class attribute
.name-of-class {
}

a combination of selectors
div.name-of-class {
}

div#name-of-id {
}

CSS Selectors

HTML element
div {
}

HTML element ID
attribute

#name-of-id {
}

How to specify “What is being styled”

Writing CSS
● In SublimeText, Open/edit:

■ continuousgood/style.css

● Target the <div> selector,

○ div {

 background: #dc4523;

 font-size: 20px;

 letter-spacing: 5px;

}

● Save then view your webpage in your browser

● Color Picker -- htmlcolorcodes.com/color-picker

https://htmlcolorcodes.com/color-picker/

● Selector “sentences” are read right to left.

● Spaces are read as: "Which is a descendent of"

○ Ex: header div: “Div which is a descendent of header”

● Word-combinations are read left to right

○ . = “which has a class of”

○ # = “which has an ID of”

○ Ex: nav.main: “nav which has a class of main”

○ Ex: nav#main: “nav which has an ID of main”

How would we read: “ header nav#main li ” ?

Reading combined selectors

● The most specific selector wins

● Use ‘ICE’ formula to determine most specific selector:

● I - Number of IDs

● C - Number of Classes

● E - Number of Elements

● #unique-id = 1 ID, 0 Classes, 0 Elements = 100

● div.fontsize div.generic-class .another-class = ?

Selector Priority

● Rule 1: Designed for reusability

● ‘first-div-on-homepage’ won’t make sense in other contexts

● Rule 2: Not overly restricted by its name

● Names like ‘twelve-pixel-font’ prevent updates

● Rule 3: Selector does not exceed its intended scope

● Be sure you’re not targeting extra elements

What makes a good CSS class?

● display: [block | inline-block | inline | table-cell | none | initial];

● position: [absolute | fixed | relative | initial | inherit];

● float: [none | left | right | initial | inherit];

● padding: [length in px, pt, em];

● margin: [auto | length in px, pt, em];

● list-style: [disc | circle | none] [inside | outside] [none | url|initial | inherit];

● width: [auto | px | em | %];

● height: [auto | px | em | %];

● border: [px] [solid | dotted] [color];

Most common CSS properties
CSS properties you’ll be expected to know and understand

CSS Box Model - Styling HTML Objects
Understanding Content, Padding, Border, and Margin

HTML “<p>” ExampleThe “Box”’ Model

Writing CSS - The Box Model
● In SublimeText, Open/edit:

■ continuousgood/style.css

● Target the <div> selector,

○ div {

 padding-top: 15px;

 border: 5px black solid;

 margin-bottom: 5px;

}

● Save then view your webpage in your browser

● Target only the Welcome <div> by adding a selector

● Every element can be thought of as a rectangular box

● Display determines how that box behaves

● inline (e.g. span, em, b)

● Element sits ‘inline’, does not break flow, no height or width

● block (e.g. div, section, p)

● Does NOT sit ‘inline’, breaks flow, takes up as much horizontal space as it can (by

default)

Display

● inline-block

● Similar to inline, but can take a height and width

● none

● Removes the element from the page

● table, table-cell, table-row etc.

● Use these to mimic behavior of table elements (less common)

Display Ctd.

● Used to adjust an element’s location

● static

● default value, as if it is not positioned

● relative

● Setting of {top: 5px} on a relatively positioned element will move it down from

the top by 5px

Position

● absolute

● Element removed from flow. To other elements, as if it isn’t there. Relative to

nearest positioned ancestor.

● fixed

● Similar to absolute, but relative to document, not ancestors. Also unaffected by

scrolling.

Position Ctd.

Allow menu links to have height set
● In SublimeText, Open/edit:

■ continuousgood/style.css

● Target the links (a) which are descendants of the nav element

● Set their display as inline-block

○ nav li a {

 padding: 12px 10px;

 background-color: #3eada7;

 display: inline-block;

}

● Save then view your webpage in your browser

CSS Workflow: Eliminate differences
1. Compare the design image to your webpage

2. Spot a single difference (no matter how small!)

3. Research how to address it

4. Write CSS to eliminate that difference

Repeat steps 1-4 until your webpage satisfactorily matches the design

● Adapts to changes in the size of the device it is being viewed on.

● The devices your site will be viewed on are always changing:

● iPhone 6, iPhone 6+, Note4, Note5, iPad?, Desktops, etc…

● Sizes of devices vary, many have landscape and portrait displays

● New devices every year with different sized screens

● Alternatives to responsive: separate mobile site

● 2 or more separate sites to maintain.

● What about tablets? or the size of the mobile devices changing?

● More maintainable to create a single, responsive, website design.

Responsive Design

● The styling (css) for a mobile website and a desktop website is

often very different

● And sites should ‘gracefully degrade’ if javaScript is disabled

“Isn’t contradictory CSS is required?”

@media queries to the rescue

Limits when a section of your CSS applies, based on a
user-defined expression, or ‘query’.

Query parameter options:

● Minimum display width

● Maximum display width

● Display type (e.g. all, screen, print)

● The orientation (landscape or portrait)

Media Query

#wrapper {
 width: 850px;
}

@media (max-width: 850px) {
 #wrapper {
 width: 100%;
 }
}

#wrapper {
 width: 850px;
 background-color: blue;
}
@media (max-width: 850px) {
 #wrapper {
 width: 100%;
 }
}
@media print and (orientation: landscape) and (min-width: 1000px) {
 #wrapper {
 background-color: white;
 }
}

Media Query

Query parameter options:
• Minimum display width
• Maximum display width
• Display type (e.g. all, screen, print)
• The orientation (landscape or portrait)

Example:

DebugAcademy.com career changers
“I’m a Senior Consultant / Drupal
Software Developer at Booz Allen
Hamilton, building Drupal sites for
various government agencies, such as
the Department of Labor, FEMA, and
the Department of Homeland Security.”

After taking the course, I was able to
combine my Drupal skills and Conflict
Analysis and Resolution major into a
career I love. I now work with nonprofit
organizations as a Software Engineer
for Beaconfire Red!

This has been the best career decision
for me. I’ve learned so much with
regards to how to be a valuable
member of a Drupal development team.
With hands-on training with Git,
Composer, Drush, SASS, Drupal, PHP
and other technologies. With just 8
weeks of training from the program, I
was able to obtain employment as a
PHP/Drupal Developer. I HIGHLY
recommend this program.

Debug Academy not only taught me
how to code, but gave me the
confidence to keep learning. It was the
support of the instructor and my
classmates that kept me going. I
completed the course and not only did
I learn Drupal, HTML, CSS and PHP but
I finally found a career I could get
excited about!

● References / Tutorials:

● HTML

■ MDN Web Docs: https://developer.mozilla.org/en-US/docs/Web/HTML

■ W3Schools: https://www.w3schools.com/html/

● CSS

■ MDN Web Docs: https://developer.mozilla.org/en-US/docs/Web/CSS

■ W3Schools: https://www.w3schools.com/css

Resources

Career-changing Drupal 8 PT Course
▪ Next part-time 3 month Drupal 8 Web Developer course:

○ Summer semester begins June 2019

○ Applications close as soon as class is full.

○ We build, launch, & contribute Drupal projects in class!

▪ Also: Tailored on-site team training available

See DebugAcademy.com / follow us at

Or contact me directly: ashraf.abed@debugacademy.com / @ashabed

This presentation comes from our

http://debugacademy.com
mailto:ashraf.abed@debugacademy.com

